tirando fuori vecchi appunti
La frequenza di beccheggio (l'inverso del periodo di beccheggio) è freqb= 1/(2pi)*sqr((displ*(R-d)/I))
displ è il dislocamento, R raggio metacentrico longitudinale, d distanza CG-CB, I momento di inerzia.
ps nel momento di inerzia le distanze entrano al quadrato, quindi 1kg a 10m equivale a *100*kg a 1m.
Che si fa con questa roba ?
La resistenza d'onda addizionale (quindi in più rispetto alle altre resistenze) avrà la forma
Ro=C*Hs^2*B^2/L
(Hs altezza onda significativa, B larghezza, L lunghezza), il coefficiente C dipende dalla relazione fra frequenza propria di beccheggio freqb e frequenza di impatto delle onde freqw, è massimo quando freqw/freqb è uguale a 1 (risonanza).
Negli altri casi (freqw/freqb diverso da 1) ha un andamento di questo tipo, dove C aumenta fortemente all'avvicinarsi di 1 (risonanza), poi ha un minimo locale B, poi al di là di un determinato valore C rimane costante. Quindi con una frequenza di rollio sufficientemente bassa (per esempio barca a dislocamento pesante/entrate fine), per una data ocndizione del mare si puo' riuscire a navigare attorno a B e se possibile C (chiaro di fronte c'è un sistema ondoso anch'esso variabile che complica le cose)
Questo contenuto non e' visualizzabile da te Ospite. Se vuoi vederlo, REGISTRATI QUI .
Viceversa una barca a dislocamento leggero tende ad avere una frequenza di beccheggio molto alta (periodo basso), quindi lavorerà molto più frequentemente nella zona fra A e 1: con mare "giovane" (frequenza di onda grande) lavorerà più vicino a 1 quindi soffrirà di più, con un mare che viceversa si stende (onde più lunghe, freqw più bassa) lavorerà più vicino ad A con una resistenza molto inferiore.
Per cercare di stare il più possibile vicino ad A in un dislocamento leggero si cerca di aumentare quanto possibile la freqb (espressione sopra), nella quale il momento di inerzia è proporzionalmente più importante: a parità di dislocamento, se si riducono a metà le distanze delle varie masse, I viene ridotto a un quarto, freqb praticamente raddoppia. Poi si puo' agire sugli altri elementi (ragigo metacentrico, dislocamento eccetera)
Il che racconta anche come sia meglio che una barca a dislocamento "distribuito" abbia estremità sottili, per sfondare meglio le onde, mentre una a dislocamento "concentrato" le abbia ben voluminose per restare più "sopra" alle onde. "Barcacce" sono sia una con estremità voluminose e pesanti (che tenderà a portarsi vicino a c=1 invece di approfittare della parte B-C), o una barca con estremità sottili e leggere che tenderà a spostarsi anch'essa verso 1 (dal lato sinistro) con un c che salta subito sù.
Poi c'è un altro aspetto carino: C dipende da freqb e freqw, quindi oltre ad agire su freqb (quindi la barca, con i suoi pesi volumi eccetera) si puo' anche agire su freqw. Freqw è la frequenza di impatto delle onde che dipende si' dalle caratteristiche del moto ondoso ma anche dall'angolo di incidenza della barca, l'angolo con il quale si prendono le onde. Modifiche anche piccole dell'angolo id impatto possono modificare freqw in modo molto rilevante (specie per le barche che lavorano fra A e 1) e quindi permettere di andar meglio: penso tutti quanti l'abbiano sperimentato magari inconsapevolmente, con un certo tipo di mare si "sente" che la barca va meglio, si muove meglio con un determinato angolo con le onde.
Quando la pratica stringe la mano alla teoria